
International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 197
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

A survey on effectiveness of TCP Westwood
in mixed wired and wireless networks

Patel Kaushika, Rathod Jagdish M.

Abstract—Internet is expanding rapidly over the entire globe, TCP/IP is inseparable part of Internet. The increased use of wireless
links for providing connectivity in remote areas and facilitating mobility in Internet brought out some serious performance issues of
TCP, which was designed for wired links. TCP Westwood (TCPW) is a sender-side modification of the TCP congestion control
algorithm that improves upon the performance of TCP Reno in wired as well as wireless networks. It continuously measure the
bandwidth used by the connection by monitoring the rate of returning ACKs. The estimate is then used to compute congestion window
and slow start threshold after a loss episode. This is to avoid over-shrinking cwnd after loss. In this paper the basic algorithm for TCP
Westwood and it’s characteristics like fairness friendliness are discussed. Also how error rate, RTT, buffer size and other parameters
cause the effect on performance measures like throughput, congestion window utilization and ssthresh. Review of modifications done
in basic algorithm based on different parameters is included with scope of improvement.

Index Terms—TCPW-TCP Westwood, ssthresh-slow start threshold, cwnd-congestion window, AI-Additive Increase, MD-
Multiplicative decrease, bwe/BE- bandwidth estimation, Sack-Selective acknowledgement, RE-Rate Estimation, DUPACK-Duplicate
acknowledgement, RTO-Retransmission Time Out.

————————————————————

1. INTRODUCTION

TCP/IP is a well known transport layer protocol, which

is implemented in any network for process-to-process
communication. It is a well-proven and accepted protocol
suite, which has successfully ensured stable and robust
network operations. TCP provides the reliable
communication to web browsing and for file and e-mail
Transfer. However, there are few performance issues
when the conventional TCP [20] is employed in the
Internet to operate over a wired/wireless network, large
latency and channel noise impair performance of wireless
Internet. According to several researches, it takes about
90% of all Internet traffic. TCP protocol designed and
modified assuming the wired connection in Network
because it provides error free connection as well as a low
delay. So the congestion and server overload was
considered as the main reasons for packet loss. The
packet losses are detected in TCP by using a timer that
triggers after the time which is twice the network’s rtt
(round trip time). Still in current TCP also there is no
distiguation between the packet loss due to Congestion or
due to corruption.[20] In network packet loss leads TCP
to reduce its flow of data by reducing its congestion
window (cwnd). TCP basically provides following
services [20].
1. Full duplex service
2. Stream data service
3. Connection oriented service
4. Reliable services

2. TCP VARIANTS
TCP congestion control involves slow start and
congestion avoidance phases. In order to improve the
performance, several mitigation techniques have been
suggested over standard TCP versions like NewReno and
SACK TCP. The proactive schemes like, TCP Veno[21],
[22] Westwood [13], [14] and TCP New Jersey[23] intend
to improve flow control and avoid packet losses from
estimation of certain network parameters. By improving
the basic Tahoe TCP other versions invented. Tahoe TCP
consist of slow start, congestion avoidance and fast
retransmission algorithms. TCP Reno adds “fast
recovery” to the Tahoe TCP as additional feature. TCP
NewReno is a modification made in TCP Reno, where
TCP sender retransmit the packet either on reception of
three dupacks or expiration of retransmission timer. In
case of Reno TCP three dupacks cause fast recovery to be
called and fast recovery exits with new
acknowledgement. Reno waits for a retransmit timer to
get expired when multiple packets are lost from a
window, in Reno, partial acks take TCP out of Fast
Recovery by “deflating” the usable window back to the
size of the congestion window. In New-Reno, partial acks
do not take TCP out of Fast Recovery. Instead, partial
acks received during Fast Recovery are treated as an
indication that the packet immediately following the
acknowledged packet in the sequence space has been lost,
and should be retransmitted. Thus, when multiple
packets are lost from a single window of data, New-Reno
can recover without a retransmission timeout, New-Reno
remains in Fast Recovery until all of the data outstanding
when Fast Recovery was initiated will get acknowledged.
It is selective acknowledgement which will give
information about safe reaching of the packets out of
order by SACK option. These TCPs are very conservative
in reducing the cwnd. They consider the cause of drops
as congestion only and reduce the cwnd and ssthresh to

————————————————
• Prof. Kaushika Patel is currently working as an assistant professor in Birla

Vishwakarma Mahavidyalaya, India,
E-mail:kdpatel@bvmengineering.ac.in

• Dr.Jagdish Rathod is currently working as an associate professor in Birla
Vishwakarma Mahavidyalaya, India
E-mail:jmrathod@bvmengineering.ac.in

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 198
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

cwnd/2. TCP Westwood introduces ”faster” recovery[15]
to avoid over-shrinking cwnd after three duplicate ACKs
by taking into account the end-to- end estimation of the
bandwidth available to TCP. Therefore, modifications
done to implement TCP Westwood are comparable to the
ones implemented in the transition from TCP Tahoe to
TCP Reno [15]. TCPW was aimed to improve
performance under random or sporadic losses. This
version was tested through simulation and showed
considerable gain in terms of goodput in almost all
scenarios.

3. AN OVERVIEW OF TCP WESTWOOD
S. Mascolo, C. Casetti, M. Gerla, S. S. Lee, M. Sanadidi at
UCLA Computer Science Department, Los Angeles
initiated research on TCP Westwood. It is mentioned that
TCP Westwood (TCPW) is a sender-side modification of
the TCP congestion window algorithm that improves
upon the performance of TCP Reno in wired as well as
wireless networks. The improvement is most significant
in wireless networks with lossy links. In fact, TCPW
performance is not very sensitive to random errors, while
TCP Reno is very sensitive to random loss and congestion
loss and it cannot discriminate between them. Hence, the
tendencies of TCP Reno to over react to errors. An
important distinguishing feature of TCP Westwood with
respect to previous wireless TCP “extensions” is that it
does not require inspection and/or interception of TCP
packets at intermediate (proxy) nodes. Rather, TCPW
fully complies with the end-to-end TCP design principle.
The key innovative idea is to continuously measure at the
TCP sender side the bandwidth used by the connection
via monitoring the rate of returning ACKs. The estimate
is then used to compute congestion window and slow
start threshold after a congestion episode, that is, after
three duplicate acknowledgments or after a timeout. The
rationale of this strategy is simple: in contrast with TCP
Reno which “blindly” halves the congestion window
after three duplicate ACKs, TCP Westwood attempts to
select a slow start threshold and a congestion window
which are consistent with the effective bandwidth used at
the time congestion is experienced. This mechanism is
called faster recovery [15].

3.1 TCP Westwood Implementation
After 3 DUPACKS
If receiving 3 DUPACKS
Set ssthresh =(BWE*RTTmin) /seg_size;
and if cwnd > ssthresh
then set cwnd = ssthresh ;
Enter congestion avoidance
After Timeout
If RTO then
Set ssthresh = (BWE*RTTmin) /seg_size;
if (ssthresh < 2) ssthresh =2;
end if ;

cwnd = 1;
end if
enter slow start;

3.2 Bandwidth Estimation
Before a congestion episode, the used bandwidth is less
or equal to the available bandwidth because the TCP
source is still probing the network capacity. It is known
that congestion occurs whenever the low-frequency input
traffic rate exceeds the link capacity. So it is important to
employ a low-pass filter to obtain the low-frequency
components of the available bandwidth. The bandwidth
Estimation is performed using a low-pass filter, as
described by the following pseudo code
sample_BWE[k] = (acked*pkt_size*8)/(now -lastacktime)

k kBWE[k] = * sample _BWE[k-1]+ (1-)(sample _BWE[k] + sample _ BWE [k-1]))α α
Or in other words

1

1
ˆ ˆˆ ˆα (1 α)()

2
k k

k k k k
b bb b −

−
+

= + − (1)

2α
2

k
k

k

t
t

τ
τ
− ∆

=
+ ∆

 (2)

Cut off frequency=1/τ; ˆ =
∆

k
k

k

db
t

 is the sample bandwidth

b^k the filtered bandwidth at time tk; first order low-pass
filter estimation.
αk is the time-varying exponential filter coefficient at tk
The approach chosen has taken care of two issues [15].
(1) The source must keep track of the number of
DUPACKs it has received before new data is
acknowledged.
(2) The source should be able to detect delayed ACKs and
act accordingly.

3.3 TCP Westwood fairness and friendliness
TCP Westwood Fairness and Friendliness study for
Lossless and lossy links has been shown in figures; here
the bottleneck was created with 5 nodes with variable
Reno/TCPW implemented as sources. The bottleneck
bandwidth is set to 5Mbps, and the RTT is 100ms. Each
TCPW connection added to the set in Fig. 1 achieves the
same throughput that shows fairness. Fig. 2 illustrates
two important points. First, superior performance of
TCPW in high error rate environment. Second
friendliness is preserved. In fact, the improvement shown
by TCPW is due more to its ability to deal with wireless
losses efficiently than to the “stealing” of bandwidth from
Reno. [14] In presence of different error rates and
propagation delay performence is evaluated [14], [15] by
M.Gerla, M.Y.Sanadidi, Ren Wang and A.Zanella using
network simulator NS-2, [17]. They compared throughput
of Reno, Sack and TCPW as a function of error rates.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 199
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

 Fig. 1 Throughputs for error free link [14]

 Fig. 2 Measured throughputs for lossy link [14]

The bottleneck bandwidth was set to 45Mbps, and the
two-way propagation time is 70ms. With no errors, the
performance of TCPW and Reno is virtually identical. As
error rate increases, TCPW outperforms Reno. For small
RTTs, Sack manages to recover fast enough so as to make
up for its inherent lack of aggressiveness (when
compared to Westwood). TCP Westwood, on the other
hand, suffers from being too aggressive for small RTTs,
and the resulting poorly-accurate bandwidth estimation
forces it into slow start too often [14] [15].

4. EARLIER WORK DONE
Significant efficiency improvements have been obtained
by TCPW using the bandwidth estimate (BE) produced
by the sampling and filtering methods. This is
particularly true in environments with large leaky pipes.
BE is accurate in estimating a connection fair share.
However, in drop-tail routers TCP traffic has been
observed to be ‘bursty’, i.e. sending out a full window of
packets and then waiting for the acknowledgements. In
this situation, competing connections may ‘take turns’ in
injecting their windows into the network, with the result
that each basically sees the bottleneck as dedicated to
itself and thus tends to over-estimate its fair share.
Consider an alternative available bandwidth sample,
defined as the amount of data reported to be delivered by
all ACKs that arrived in the last T time units, divided by

T. This method is called Rate Estimation (RE). This
alternative is identical to the earlier TCPW sample
definition if the ACKs are uniformly spaced in time.
Simulation and measurements, however, show that ACKs
tend to cluster in bursts. Thus, the BE sampling method
‘overestimates’ the connection fair share, while providing
(in the bursty case) a reasonably good estimate of the
instantly available bandwidth at the bottleneck. It turns
out that BE is more effective in environments where
friendliness (to other TCP connections) is not of concern,
for instance, in the case of single connection operation or
when random error/loss is significant and TCP NewReno
is unable to take its fair share [9].
4.1 Rate Estimation

 j kt t T
k T

dj
RE > −=

∑
 (3)

Where dj is the amount of data reported by ACK j.
Similarly, at the previous time instant, k-1; the sample k -
1 is

 1
1

j kt t T
k T

dj
RE −> −

− =
∑

 (4)

Therefore

1
1 ()− −> − >

−− = −
∑ ∑

j k j k Tt t T t t
k k T T

dj dj
RE RE (5)
Which, on rearrangement,

1

1
1 ()

j k j k T

k k
t t T t t

RE RE dj dj
T − −

−

> − >

= + −∑ ∑ (6)

This is a desirable feature when we are dealing with
bursty TCP traffic in presence of congestion. To calculate
the Rate Estimate at the instant the kth ACK is received
as:

1α 1 (1 α) k k

k k k k
RE RERE RE

T
−+

= − + − (7)

4.1.1 Estimation with no random errors on the
paths [9]

Fig. 3 shows comparison for the BE and RE estimations
when there are no random errors on the paths.
Experimental set up was a bottleneck of 5Mbps shared
by TCPW and TCP NewReno. The graph was obtained
applying the BE and RE estimators to TCPW. The
network configuration has bottleneck
bandwidth=5Mbps, RTT=70ms, T=4RTT. The link is
error free and no packet is dropped in initial seconds
due to congestion. As seen in Fig. 3, the BE is
estimating about 3.6 Mbps which is larger than its 2.5
Mbps fair share, while the RE estimator is estimating
exactly the fair share value. Fig. 4 shows BE and RE
estimates when there are one TCPW flow and 4
NewReno flows sharing a 10 Mbps bottleneck. The
same trend as in Fig. 3 (BE overestimates while RE
oscillates around fair share) was observed.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 200
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

 Fig. 3 BE and RE with concurrent New Reno [9]

 Fig. 4 BE and RE with multiple NewReno [9]
4.1.2 Estimation in presence of random errors on
the path [9]
Experimental set up was as it was a bottleneck of 5Mbps
shared by TCPW and TCP NewReno but random error of
0.5% was introduced. Results in Fig. 5 and Table 1
confirm that BE should be used when random error is the
cause of packet losses. First, note that the fair share of
TCPW is actually larger than C/2=2.5 Mbps in this case,
since NewReno is inherently unable to utilize the link
capacity. Through simulation result (seeTable 1), when
two NewReno flows share the link, the throughput
obtained by each flow is 1.4 Mbps. Thus, in this
configuration, the TCPW flow can take as much as 3.6
Mbps out of the total 5 Mbps without harming NewReno
performance. RE estimate settles at about 1.8 Mbps,
underestimating its fair share, while BE estimates a more
accurate share at 3.4 Mbps.

Fig. 5 BE and RE with concurrent NewReno error rate=0.5% [9]

Again, BE and RE estimates in the multiple connection
Scenario was examined. Simulations run with one TCPW
And four NewReno flows sharing bottleneck link of
10Mbps with random error rate of 1%. Estimates are

Table 1

Estimation and throughput (two flows) [9]

provided by BE and RE are shown in Fig. 6; and Table 2
lists the average estimates and throughputs for the TCPW
flow, and average throughputs for NewReno flows.
Similar to the previous experiment, the fair share of
TCPW is actually larger than C/5= 2 Mbps in this case.
Through simulation (see Table 2), when five NewReno
flows share the link, the average throughput obtained by
each flow is 1.1 Mbps. Thus, in this configuration, the
TCPW flow can take as much as 5.6 Mbps out of the total
10 Mbps without harming NewReno performance. Fig. 6
shows that RE estimates settle way below the potential
fair share, while BE achieves a higher estimate. The
throughput results also confirm that using BE is better in
the random error case.

Fig. 6 BE and RE with multiple concurrent NewReno connections
(error rate 1%) [9]

Table 2
Estimation and throughput (five flows) [9]

From Table 2, TCPW BE and TCPW RE obtain 2.42 and
1.97 Mbps, respectively, while the competing TCP
NewReno roughly sustains a 1.1 Mbps throughput which
is equal to the fair share when five NewReno flows share
the link. Thus, both TCPW BE and RE are friendly to

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 201
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

NewReno in this random error case. In addition TCPW
BE is more efficient than TCPW RE.
In case of non-adaptive traffic like UDP the BE method is
the better method to be used, and in fact, in all cases
when random errors are the predominant cause of packet
losses. It is important to identifying predominant cause of
packet loss. And combination of rate estimation and
bandwidth estimation was used for simulation
experiments.
In case the loss indication is 3 DUPACKS, ssthresh and
cwnd are set as follows
If (3 DUPACK)
If(cwnd/(RE*RTTmin)/seg_size)>θ)/*congestion*/
Ssthresh=(RE*RTTmin)/seg_size
Else
Ssthresh=(BE*RTTmin)/seg_size
Endif
If (cwnd>ssthresh)
Cwnd=ssthresh
Endif
Endif
θ=1.4
In case of a packet loss indicated by a timeout expiration,
ssthresh and cwnd are set as follows
If (Time-out)
Cwnd=1
Ssthresh=(BE*RTTmin)/seg_size
If(ssthresh<2)
Ssthresh=2
Endif
Endif
4.2 TCP Westwood with Agile probing
It has been showen that TCP Westwood gives significant
performance improvement over high-speed
heterogeneous networks. The idea of TCPW is to use
Eligible Rate Estimation (ERE) methods to set the
congestion window (cwnd) and slow start threshold
(ssthresh) after a packet loss as discussed. ERE is defined
as the transmission rate a sender ought to use to achieve
high utilization and remain friendly to other TCP
variants. TCP Westwood with Agile probing (TCPW-A) is
a sender side enhancement of TCPW. TCPW-A perform
well when it was faced with highly dynamic bandwidth,
large propagation time/bandwidth, and random loss in
the heterogeneous Internet. TCPW-A achieves its goal by
incorporating the following two mechanisms [6]
(1) When a connection initially begins or restarts after a
timeout, instead of exponentially expanding cwnd to an
arbitrary preset sthresh and then going into linear
increase, TCPW-A uses agile probing, a mechanism that
repeatedly resets ssthresh based on ERE and forces cwnd
into an exponential climb each time. The result is fast
convergence to a more appropriate ssthresh value.
(2) In congestion avoidance, TCPW-A invokes agile
probing upon detection of persistent extra bandwidth via
a scheme called persistent non congestion detection

(PNCD). While in congestion avoidance, agile probing is
actually invoked under the following conditions (1) large
amount of bandwidth that suddenly becomes available
due to change in network conditions. This can be done
via scheme called Load Gauge. (2) Random loss during
slow-start that causes the connection to prematurely exit
the slow-start phase. [4]
Two basic mechanisms are involved here, first
mechanism is Agile Probing, which is invoked at
connection start-up (including after a time-out), and after
extra available bandwidth is detected. Agile Probing
adaptively and repeatedly resets ssthresh based on ERE.
Each time the ssthresh is reset to a value higher than the
current one, cwnd climbs exponentially to the new value.
This way, the sender is able to grow cwnd efficiently (but
conservatively) to the maximum value allowed by
current conditions without overflowing the bottleneck
buffer with multiple losses. The second mechanism is
“Load Gauge”. Load Gauge (LG) mechanism that aimed
at monitoring extra available bandwidth and invoking
Agile probing accordingly. cwnd/RTTmin indicates
Expected Rate in no congestion and RE is the achieved
rate. To be more precise, RE is the Achieved Rate
corresponding to the Expected Rate 1.5 times RTT earlier.
A comparison must be used, the corresponding Expected
Rate, that is (cwnd -1.5)/RTTmin. RE tracks the Expected
Rate in non-congestion conditions, but flattens, remaining
close to the initial Expected Rate (ssthresh / RTTmin)
under congestion. The Congestion Boundary is define as

Congestion Boundary=β* Expected Rate + (1-β) * I n i t i al
Expected Rate; 0<β<1,
β=0.5.
if (in Congestion Avoidance except for the initial two
RTT)
{ if(RE >Congestion Boundary)
{
no_congestion_counter++;
else if (no congestion_counter > 0){
no_congestion_counter--;
if (no_congstion_counter > cwnd){
re-start Agile Probing;
}else{
no_congestion_counter = 0;
}
If the parameter β is greater than 0.5, the Congestion
Boundary line gets closer to Expected Rate. We can make
this algorithm more conservative by setting β > 0.5. [4] [6]
TCP Reno and its versions are widely used in current
networks, however it has been actualized that their
throughput deteriorates in high-speed network and
wireless environments. To overcome these problems of
TCP Reno versions, a number of protocols have been
proposed. In these, friendliness with TCP Reno becomes
very important. In the situation where TCP Reno and
new protocols connections share the same bottleneck link

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 202
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

and throughput of either one protocol is degraded.
Among of them, in the case of TCP Westwood, when the
buffer size of bottleneck link router is set to bandwidth
delay product, TCP Westwood achieves friendliness with
TCP Reno. When buffer size was set to smaller than
bandwidth delay product, throughput of TCP Reno
connections degrade. On the other hand, when buffer size
is set to larger than bandwidth delay product, throughput
of TCP Westwood connections is degraded by TCP Reno
connection. Improved version of TCP Westwood
overcomes unfriendliness of TCP Westwood according to
buffer size of bottleneck link router. Buffer size of the
bottleneck link router was estimated by applying a
bandwidth estimation technique known as RCE (Residual
Capacity Estimator). Rate estimation method is used for
improvement. If TCP Westwood sender detects packet
losses by duplicate ACK packets, cwnd and ssthresh are
updated.
If loss is detected by retransmission Timeout expiration,
cwnd=1 and ssthresh was calculated by RE.
Router buffer size can be calculated by

(*)

*8
AvgRTT CB
packetSize

= (8)

TCP Westwood and TCP Reno are friendly to each other
in case of buffer size

* min

*8
C RTTB
packetSize

= (9)

Residual Capacity Estimator (RCE) [5]
Residual Capacity Estimator (RCE) scheme estimates the
bottleneck link capacity deducted by the uniformly
distributed traffic present. The RCE scheme eliminates
buffering times. The sender counts packets leaving to the
receiver in retransmission time-out (RTO), and then the
sender waits for correspondent returning ACK packets,
where the time is set to ACKs_slot_time. Here, the sender
calculates the wasted_time from the ACKs_slot_time
standpoint. The sender measures an average of the
interarrival time between the ACKs of ACKs_slot_time.
The wasted_time is then computed as the sum of time
exceeding the average in each inter arrival time of
ACKs_slot_time. The exceeding gap times between ACKs
are most likely a result of having periods of buffering.
The sender has to compute the bottleneck link capacity by

_
_ _ _

Bits ACKedC
ACKs slot time Wasted time

=
−

 (10)

Buffer size estimation

(min)*_

_ *8
RTT RTT CBS estimate

packet size
−

= (11)

(_) * _ * 8
_

BS estimate BDP Packet size
diff delay

C
−

= (12)

min

_
_

(_)
RTT diff delay

fair response
RTT diff delay RTT

−
=

− −
 (13)

And the ssthresh is calculated using compensated RTTmin

min min2_ *
_(_)

RTT RTTcompensated RTT RTT RTT
RTT diff delayfair response

= − =
−

 (14)

* _ min
_ *8

=
ERE compensated RTTssthresh

Packet size
 (15)

The performance was evaluated as throughput ratio [5]
_

_
Westwood throughputThroughputratio

legacyprotocol throughput
= (16)

As shown in figure 7.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 203
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Fig.7 (a), (b), (c) Throughput ratio between legacy protocols and
TCP Westwood/proposal scheme with variant buffer size.
The appropriate ssthresh can enhance TCP performance.
Assume that RTTmin is the minimum RTT. By setting the
initial slow start thresh (ssthresh) of TCP to an arbitrary
value, TCP performance may suffer from two potential
problems as follows:
1. If ssthresh is set too high over the bandwidth of the
links, the exponential increase of Congestion window size
(cwnd) will generate too many packets too quickly,
causing consecutive packet loss at the bottleneck router
and lots timeouts.
2. If the initial ssthresh is set too low, the sender does not
effectively utilize the exponential increase of the slow
start state and switches prematurely to a linear increase
of the congestion avoidance state. The utilization of a
large bandwidth is not effective when the start up is poor.
So it was required to set appropriate rate for flow.
The appropriate rate defined as (AppR) where AppR
with β = 0.3 and 0 < β < 1

min

cwndExpectedrate
RTT

= (17)

/Actualrate cwnd RTT= (18)

* *(1)()

min
ExpectedRate B ActualRate BAppropriateRate AppR

RTT
+ −

= (19)

 Fig. 8 Expected rate, appropriate rate, and actual rate with β = 0.3
Figure 8 shows the relationships among the expected
rate, the actual rate, and the appropriate rate. If
parameter β is close to 1, the appropriate rate would get
closer to the expected rate. Therefore, the appropriate
ssthresh would be set too high. On the other hand, if
parameter β is close to 0, the appropriate ssthresh would
be too conservative (small) to degrade TCP performance.
In this paper, we make the appropriate rate conservative
by setting β to 0.3. If the appropriate rate is too large,
ssthresh would be set too high. This would cause
multiple packet loss if the exponential increase of cwnd
generates too many packets too quickly. When a sender
receives an ACK in the slow-start state, the pseudo code
of the algorithm is as given. [3]

if (cwnd < ssthresh) /* slow start */
ssthresh = AppR × RTTmin/seg_size;
if (cwnd > sthresh) /*congestion avoidance */
cwnd = ssthresh;
endif
endif

if (timeout expires) /*slow start */
cwnd = 1;
ssthresh = AppR × RTTmin/seg_size;
if (ssthresh < 2)
ssthresh = 2;
endif
endif
When a timeout or a fast retransmission is in the
congestion avoidance state, the pseudo code of the
algorithm is as follows
If (fast retransmission executes)
ssthresh = Actual Rate × (1−β) × RTTmin/seg_size;
cwnd = ssthresh;
endif
if (timeout expires)
cwnd = 1;
ssthresh = AppR × RTTmin/seg_size;
if (ssthresh < 2)
sthresh = 2;
endif
endif
Appropriate Congestion Window Calculation
RTTdiff = RTTmax − RTTmin
Variation = RTTdiff/RTTmax,
For three consecutive decreases of RTT, three cases are
defined of the next cwnd below.
cwndnext = cwndcur + 1, if Variation < 1/3
cwndnext =cwndcur + 3, if 1/3 ≤ Variation < 2/3
cwndnext =cwndcur + 5, if Variation ≥ 2/3
For three consecutive increases of RTT, cwndnext = _
cwndcur + 1, if Variation < 1/2
cwndnext = cwndcur , if Variation ≥ 1/2.
The discussed scheme is summarized in Fig. 9. This

Fig.9 Congestion control diagram for the discussed scheme [3]

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 204
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

scheme helps a sender intelligently solve the issues of
high dynamic bandwidth and long delay.
Another contribution of this work was the proposed
observation RTT mechanism, which uses an aggressive
congestion avoidance strategy. It observes variations of
RTT and adjusts the cwnd effectively to improve
performance.

CONCLUSIONS
TCP Westwood estimates bandwidth and adjusts the
cwnd and ssthreh after loss detection. Sets bandwidth to
the measured rate currently experienced by the
connection, rather than using the conventional MD
scheme. Literatures say experimental studies reveal
improvements in throughput performance, as well as in
fairness. In addition, friendliness with TCP Reno was
observed in a set of research paper showing that TCP
Reno connections are not starved by TCPW connections.
Most importantly, TCPW is extremely effective in mixed
wired and wireless networks. TCPW handles the losses
caused by link errors. In presence of errors TCP
Westwood outperforms without stealing large fraction of
competing TCP. The BE sampling method ‘overestimates’
the connection fair share at bottleneck in case of lossless
networks with bursty traffic. In general BE is more
effective in environments where friendliness (to other
TCP connections) is not of concern.

SCOPE OF IMPROVEMENT
Refinement in bandwidth estimation and filtering
method can be done in order to improve TCP
Westwood’s performance. Present implementation
calculate congestion window and ssthresh base on
estimated bandwidth only on loss occurrences, this can
be done on each packet reception. This can improve
bandwidth utilization. Improvement in Friendlyness has
scope. Based on the network load cwnd can be adjusted.
Bandwidth Delay Product and buffer size comparison can
be done. RTT can also be useful parameter in improving
the performance. Modified algorithm can be
implemented to validate on simulator and on real test
beds for wired/wireless networks.

Acknowledgment
The author is thankful to Principal and Head of
Electronics and Communication Department,
CHARUSAT University,Gujarat- India for their support
and encouragement during the research endeavour. We
would also like to thank Principal and Head of
Electronics Department, Birla Vishwakarma
Mahavidhyalaya, Gujarat-India for all cooperation during
the research work.

REFERENCES
[1] Shimaa Hagag, Ayman EI-Sayed(IEEE Senior Member)

“Enhanced TCP Westwood Congestion Avoidance

Mechanism(TCP WestwoodNew)”,InternationalJournal Of
Computer Application, May-2012.

[2] Kou Lan, Niu Sha“A CMT Congestion Window Updates
Mechanism Based on TCP Westwood”,IEEE International
Conference on Mechatronic Science, Electric Engineering
and Computer, August-2011, held at Jilin China.

[3] Neng-Chung Wang, Jong-Shin Chen, Yung-Fa Huang, Chi
LunChiou “Performance Enhancement Of TCP in Dynamic
Bandwidth Wired and Wireless Network”, Springer
Science+Business Media, Wireless Personal
Communications: An International Journal archive
Volume 47 Issue 3, November 2008 Pages 399 – 415.

[4] Kenshin Yamada, Ren Wang, M. Y. Sanadidi, Mario Gerla
“TCP With Sender-Side Intelligence to Handle Dynamic, Large,
Leaky Pipes” IEEE Journal on Selected Areas in
Communications,Volume: 23 , Issue: 2 Page(s): 235 - 248
Feb-2005.

[5] Kazumi Kaneko, Jiro Katto “Reno Friendly TCP Westwood
Based On Router Buffer Estimation”, International
Conference on Autonomic and Autonomous System and
International Conference on Networking and Services,
IEEE Computer Society, 2005.

[6] Kenshin Yamada, Ren Wang, M. Y. Sanadidi, Mario Gerla
“TCP Westwood with Agile Probing: Dealing with Dynamic,
Large, Leaky Pipes”, in proceeding of: Communications,
2004, IEEE International Conference.

[7] S. Floyd, T. Henderson, A. Gurtov, “The NewReno
modification to TCP's fast recovery algorithm”, IETF RFC,
3782, April-2004.

[8] S. Floyd, T. Henderson, A. Gurtov, Y. Nishida “The
NewReno Modification to TCP’s Fast Recovery Algorithm”,
Internet Engineering Task Force RFC-6582 2004.

[9] M. Gerla, B.K.F. Ng, M.Y. Sanadidi, M. Valla, R. Wang
“TCP westwood with adaptive bandwidth estimation to improve
efficiency/friendliness tradeoffs”, Journal of Elsevier
Computer Communication volume 27 (1) (2004) 41_58.

[10] S. Floyd, T. Henderson, A. Gurtov “The New Reno
Modification to TCP’s Fast Recovery Algorithm,RFC-
3582”,Networking Working Group,April-2004.

[11] S. Floyd, T. Henderson, A. Gurtov, Y. Nishida “The New
Reno Modification to TCP’s Fast Recovery Algorithm,RFC-
6582”, Internet Engineering Task Force, 2004.

[12] Claudio Casetti, Mario Gerla, Saverio Mascolo,
M.Y.Sanadidi, Ren Wang “TCP Westwood: End-to-End
Congestion Control For Wired/Wireless Networks”, Wireless
Networks 8, 467–479, 2002 Kluwer Academic Publishers.
Manufactured in The Netherlands.

[13] Ren Wang, Massimo Valla, M. Y. Sanadidi, Mario Gerla
“Adaptive Bandwidth Share Estimation in TCP Westwood”,
Proc. IEEE Globecom 2002, Taipei, Taiwan, R.O.C.,
November 17-21, 2002.

[14] Mario Gerla, M. Y. Sanadidi, Ren Wang, and Andrea
Zanella “TCP Westwood: Congestion Window Control Using
Bandwidth Estimation”, Proceedings of IEEE Globecom
2001, Volume: 3, pp 1698-1702, San Antonio, Texas, USA,
November 25-29, 2001.

[15] S. Mascolo, C. Casetti, M. Gerla, S. S. Lee, M. Sanadidi
“TCP Westwood: Congestion control with faster
recovery”,UCLA Computer Science Department, Los
Angeles, CSD TR200017.

[16] K. Fall and S. Floyd, “Simulation-based comparisons of Tahoe,
Reno, and SACK TCP”, Newsletter , ACM SIGCOMM
Computer Communication Review.

[17] Ns-2, network simulator (ver.2).LBL, URL: http://www-
mash.cs.berkeley.edu/ns.

[18] TCP Westwood modules for ns-2:URL:
http://www1.tcl.polito.it/casetti/tcp-westwood.

IJSER

http://www.ijser.org/
http://dl.acm.org/citation.cfm?id=J806&picked=prox&cfid=233856199&cftoken=87370101
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=30289
http://www-mash.cs.berkeley.edu/ns
http://www-mash.cs.berkeley.edu/ns
http://www1.tcl.polito.it/casetti/tcp-westwood

International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 205
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

[19] J. B. Postel, “RFC-793: Transmission Control Protocol”, IETF,
September 1981.

[20] A Book on “TCP/IP Protocol Suite” by Behrouz A.
Forouzen.

[21] C. P. Fu, “TCP Veno: End-to-End Congestion Control
Over Heterogeneous Networks,” Ph.D. dissertation, The
Chinese University, Hong Kong, 2001.

[22] Cheng Peng Fu, Soung C. Liew, TCP Veno: TCP
Enhancement for Transmission Over Wireless Access
Networks, IEEE Journal On Selected Areas In
Communications, Vol. 21, No. 2, February 2003

[23] Kai Xu, Ye Tian, and Nirwan Ansari, “TCP-Jersey for
Wireless IP Communications”, IEEE Journal On Selected
Areas In Communications, Vol. 22, No. 4, May 2004 747-
756

[24] TCP Westwood Modules [Online]. Available:
http://www1.tlc.polito.it/casetti/tcp-westwood

IJSER

http://www.ijser.org/

	CONCLUSIONS

