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A survey on effectiveness of TCP Westwood 
in mixed wired and wireless networks 

Patel Kaushika, Rathod Jagdish M. 
 
Abstract—Internet is expanding rapidly over the entire globe, TCP/IP is inseparable part of Internet. The increased use of wireless 
links for providing connectivity in remote areas and facilitating mobility in Internet brought out some serious performance issues of 
TCP, which was designed for wired links. TCP Westwood (TCPW) is a sender-side modification of the TCP congestion control 
algorithm that improves upon the performance of TCP Reno in wired as well as wireless networks. It continuously measure the 
bandwidth used by the connection by monitoring the rate of returning ACKs. The estimate is then used to compute congestion window 
and slow start threshold after a loss episode. This is to avoid over-shrinking cwnd after loss. In this paper the basic algorithm for TCP 
Westwood and it’s characteristics like fairness friendliness are discussed. Also how error rate, RTT, buffer size and other parameters 
cause the effect on performance measures like throughput, congestion window utilization and ssthresh. Review of modifications done 
in basic algorithm based on different parameters is included with scope of improvement. 

Index Terms—TCPW-TCP Westwood, ssthresh-slow start threshold, cwnd-congestion window, AI-Additive Increase, MD-
Multiplicative decrease, bwe/BE- bandwidth estimation, Sack-Selective acknowledgement, RE-Rate Estimation, DUPACK-Duplicate 
acknowledgement, RTO-Retransmission Time Out. 

———————————————————— 
 

1. INTRODUCTION 

TCP/IP is a well known transport layer protocol, which 

is implemented in any network for process-to-process 
communication. It is a well-proven and accepted protocol 
suite, which has successfully ensured stable and robust 
network operations. TCP provides the reliable 
communication to web browsing and for file and e-mail 
Transfer. However, there are few performance issues 
when the conventional TCP [20] is employed in the 
Internet to operate over a wired/wireless network, large 
latency and channel noise impair performance of wireless 
Internet. According to several researches, it takes about 
90% of all Internet traffic. TCP protocol designed and 
modified assuming the wired connection in Network 
because it provides error free connection as well as a low 
delay. So the congestion and server overload was 
considered as the main reasons for packet loss. The 
packet losses are detected in TCP by using a timer that 
triggers after the time which is twice the network’s rtt 
(round trip time). Still in current TCP also there is no 
distiguation between the packet loss due to Congestion or 
due to corruption.[20] In network packet loss leads TCP 
to reduce its flow of data by reducing its congestion 
window (cwnd). TCP basically provides following 
services [20]. 
1. Full duplex service 
2. Stream data service 
3. Connection oriented service 
4. Reliable services 
 

2. TCP VARIANTS 
TCP congestion control involves slow start and 
congestion avoidance phases. In order to improve the 
performance, several mitigation techniques have been 
suggested over standard TCP versions like NewReno and 
SACK TCP. The proactive schemes like, TCP Veno[21], 
[22] Westwood [13], [14] and TCP New Jersey[23] intend 
to improve flow control and avoid packet losses from 
estimation of certain network parameters. By improving 
the basic Tahoe TCP other versions invented. Tahoe TCP 
consist of slow start, congestion avoidance and fast 
retransmission algorithms. TCP Reno adds “fast 
recovery” to the Tahoe TCP as additional feature. TCP 
NewReno is a modification made in TCP Reno, where 
TCP sender retransmit the packet either on reception of  
three dupacks or expiration of retransmission timer. In 
case of Reno TCP three dupacks cause fast recovery to be 
called and fast recovery exits with new 
acknowledgement. Reno waits for a retransmit timer to 
get expired when multiple packets are lost from a 
window, in Reno, partial acks take TCP out of Fast 
Recovery by “deflating” the usable window back to the 
size of the congestion window. In New-Reno, partial acks 
do not take TCP out of Fast Recovery. Instead, partial 
acks received during Fast Recovery are treated as an 
indication that the packet immediately following the 
acknowledged packet in the sequence space has been lost, 
and should be retransmitted. Thus, when multiple 
packets are lost from a single window of data, New-Reno 
can recover without a retransmission timeout, New-Reno 
remains in Fast Recovery until all of the data outstanding 
when Fast Recovery was initiated will get acknowledged. 
It is selective acknowledgement which will give 
information about safe reaching of the packets out of 
order by SACK option. These TCPs are very conservative 
in reducing the cwnd. They consider the cause of drops 
as congestion only and reduce the cwnd and ssthresh to 
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cwnd/2. TCP Westwood introduces ”faster” recovery[15] 
to avoid over-shrinking cwnd after three duplicate ACKs 
by taking into account the end-to- end estimation of the 
bandwidth available to TCP. Therefore, modifications 
done to implement TCP Westwood are comparable to the 
ones implemented in the transition from TCP Tahoe to 
TCP Reno [15]. TCPW was aimed to improve 
performance under random or sporadic losses. This 
version was tested through simulation and showed 
considerable gain in terms of goodput in almost all 
scenarios. 
 
3. AN OVERVIEW OF TCP WESTWOOD 
S. Mascolo, C. Casetti, M. Gerla, S. S. Lee, M. Sanadidi at 
UCLA Computer Science Department, Los Angeles 
initiated research on TCP Westwood. It is mentioned that 
TCP Westwood (TCPW) is a sender-side modification of 
the TCP congestion window algorithm that improves 
upon the performance of TCP Reno in wired as well as 
wireless networks. The improvement is most significant 
in wireless networks with lossy links. In fact, TCPW 
performance is not very sensitive to random errors, while 
TCP Reno is very sensitive to random loss and congestion 
loss and it cannot discriminate between them. Hence, the 
tendencies of TCP Reno to over react to errors. An 
important distinguishing feature of TCP Westwood with 
respect to previous wireless TCP “extensions” is that it 
does not require inspection and/or interception of TCP 
packets at intermediate (proxy) nodes. Rather, TCPW 
fully complies with the end-to-end TCP design principle. 
The key innovative idea is to continuously measure at the 
TCP sender side the bandwidth used by the connection 
via monitoring the rate of returning ACKs. The estimate 
is then used to compute congestion window and slow 
start threshold after a congestion episode, that is, after 
three duplicate acknowledgments or after a timeout. The 
rationale of this strategy is simple: in contrast with TCP 
Reno which “blindly” halves the congestion window 
after three duplicate ACKs, TCP Westwood attempts to 
select a slow start threshold and a congestion window 
which are consistent with the effective bandwidth used at 
the time congestion is experienced. This mechanism is 
called faster recovery [15].  
 
3.1 TCP Westwood Implementation 
After 3 DUPACKS  
If receiving 3 DUPACKS  
Set ssthresh =(BWE*RTTmin) /seg_size;  
and if cwnd > ssthresh  
then set cwnd = ssthresh ;  
Enter congestion avoidance 
After  Timeout  
If RTO then  
Set ssthresh = (BWE*RTTmin) /seg_size;  
if (ssthresh < 2) ssthresh =2;  
end if ;  

cwnd = 1;  
end if  
enter slow start; 
 
3.2 Bandwidth Estimation 
Before a congestion episode, the used bandwidth is less 
or equal to the available bandwidth because the TCP 
source is still probing the network capacity. It is known 
that congestion occurs whenever the low-frequency input 
traffic rate exceeds the link capacity. So it is important to 
employ a low-pass filter to obtain the low-frequency 
components of the available bandwidth. The bandwidth  
Estimation is performed using a low-pass filter, as 
described by the following pseudo code 
sample_BWE[k] = (acked*pkt_size*8)/(now -lastacktime)

k kBWE[k] = * sample _BWE[k-1]+ (1- )( sample _BWE[k] + sample _ BWE   [k-1]))α α
Or in other words 

 
1

1
ˆ ˆˆ ˆα (1 α )( )

2
k k

k k k k
b bb b −

−
+

= + −     (1) 

 
2α
2

k
k

k

t
t

τ
τ
− ∆

=
+ ∆

                                      (2) 

Cut off frequency=1/τ; ˆ =
∆

k
k

k

db
t

 is the sample bandwidth  

b^k the filtered bandwidth at time tk;  first order low-pass 
filter estimation. 
αk is the time-varying  exponential filter coefficient at tk  
The approach chosen has taken care of two issues [15]. 
(1) The source must keep track of the number of 
DUPACKs it has received before new data is 
acknowledged. 
(2) The source should be able to detect delayed ACKs and 
act accordingly. 

 
3.3 TCP Westwood fairness and friendliness 
TCP Westwood Fairness and Friendliness study for 
Lossless and lossy links has been shown in figures; here 
the bottleneck was created with 5 nodes with variable 
Reno/TCPW implemented as sources. The bottleneck 
bandwidth is set to 5Mbps, and the RTT is 100ms.  Each 
TCPW connection added to the set in Fig. 1 achieves the 
same throughput that shows fairness. Fig. 2 illustrates 
two important points. First, superior performance of 
TCPW in high error rate environment. Second 
friendliness is preserved. In fact, the improvement shown 
by TCPW is due more to its ability to deal with wireless 
losses efficiently than to the “stealing” of bandwidth from 
Reno. [14] In presence of different error rates and 
propagation delay performence is evaluated [14], [15] by 
M.Gerla, M.Y.Sanadidi, Ren Wang and A.Zanella using 
network simulator NS-2, [17]. They compared throughput 
of Reno, Sack and TCPW as a function of error rates. 
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              Fig. 1 Throughputs for error free link [14] 

 
               Fig. 2 Measured throughputs for lossy link [14]  

The bottleneck bandwidth was set to 45Mbps, and the 
two-way propagation time is 70ms. With no errors, the 
performance of TCPW and Reno is virtually identical. As 
error rate increases, TCPW outperforms Reno. For small 
RTTs, Sack manages to recover fast enough so as to make 
up for its inherent lack of aggressiveness (when 
compared to Westwood). TCP Westwood, on the other 
hand, suffers from being too aggressive for small RTTs, 
and the resulting poorly-accurate bandwidth estimation 
forces it into slow start too often [14] [15]. 
 
4. EARLIER WORK DONE  
Significant efficiency improvements have been obtained 
by TCPW using the bandwidth estimate (BE) produced 
by the sampling and filtering methods. This is 
particularly true in environments with large leaky pipes. 
BE is accurate in estimating a connection fair share. 
However, in drop-tail routers TCP traffic has been 
observed to be ‘bursty’, i.e. sending out a full window of 
packets and then waiting for the acknowledgements. In 
this situation, competing connections may ‘take turns’ in 
injecting their windows into the network, with the result 
that each basically sees the bottleneck as dedicated to 
itself and thus tends to over-estimate its fair share. 
Consider an alternative available bandwidth sample, 
defined as the amount of data reported to be delivered by 
all ACKs that arrived in the last T time units, divided by 

T. This method is called Rate Estimation (RE). This 
alternative is identical to the earlier TCPW sample 
definition if the ACKs are uniformly spaced in time. 
Simulation and measurements, however, show that ACKs 
tend to cluster in bursts. Thus, the BE sampling method 
‘overestimates’ the connection fair share, while providing 
(in the bursty case) a reasonably good estimate of the 
instantly available bandwidth at the bottleneck. It turns 
out that BE is more effective in environments where 
friendliness (to other TCP connections) is not of concern, 
for instance, in the case of single connection operation or 
when random error/loss is significant and TCP NewReno 
is unable to take its fair share [9]. 
4.1 Rate Estimation 
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∑
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Where dj is the amount of data reported by ACK j. 
Similarly, at the previous time instant, k-1; the sample k - 
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Which, on rearrangement, 
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This is a desirable feature when we are dealing with 
bursty TCP traffic in presence of congestion. To calculate 
the Rate Estimate at the instant the kth ACK is received 
as: 
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4.1.1 Estimation with no random errors on the 
paths [9] 

Fig. 3 shows comparison for the BE and RE estimations 
when there are no random errors on the paths. 
Experimental set up was a bottleneck of 5Mbps shared 
by TCPW and TCP NewReno. The graph was obtained 
applying the BE and RE estimators to TCPW. The 
network configuration has bottleneck 
bandwidth=5Mbps, RTT=70ms, T=4RTT. The link is 
error free and no packet is dropped in initial seconds 
due to congestion. As seen in Fig. 3, the BE is 
estimating about 3.6 Mbps which is larger than its 2.5 
Mbps fair share, while the RE estimator is estimating 
exactly the fair share value. Fig. 4 shows BE and RE 
estimates when there are one TCPW flow and 4 
NewReno flows sharing a 10 Mbps bottleneck. The 
same trend as in Fig. 3 (BE overestimates while RE 
oscillates around fair share) was observed. 
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            Fig. 3 BE and RE with concurrent New Reno [9]        

 
  Fig. 4 BE and RE with multiple NewReno [9] 
4.1.2 Estimation in presence of random errors on 
the path [9] 
Experimental set up was as it was a bottleneck of 5Mbps 
shared by TCPW and TCP NewReno but random error of 
0.5% was introduced. Results in Fig. 5 and Table 1 
confirm that BE should be used when random error is the 
cause of packet losses. First, note that the fair share of 
TCPW is actually larger than C/2=2.5 Mbps in this case, 
since NewReno is inherently unable to utilize the link 
capacity. Through simulation result (seeTable 1), when 
two NewReno flows share the link, the throughput 
obtained by each flow is 1.4 Mbps. Thus, in this 
configuration, the TCPW flow can take as much as 3.6 
Mbps out of the total 5 Mbps without harming NewReno 
performance. RE estimate settles at about 1.8 Mbps, 
underestimating its fair share, while BE estimates a more 
accurate share at 3.4 Mbps. 

 
Fig. 5 BE and RE with concurrent NewReno error rate=0.5% [9] 

Again, BE and RE estimates in the multiple connection 
Scenario was examined. Simulations run with one TCPW 
And four NewReno flows sharing bottleneck link of 
10Mbps with random error rate of 1%. Estimates are  
 

Table 1 

Estimation and throughput (two flows) [9] 

 
provided by BE and RE are shown in Fig. 6; and Table 2 
lists the average estimates and throughputs for the TCPW 
flow, and average throughputs for NewReno flows. 
Similar to the previous experiment, the fair share of 
TCPW is actually larger than C/5= 2 Mbps in this case. 
Through simulation (see Table 2), when five NewReno 
flows share the link, the average throughput obtained by 
each flow is 1.1 Mbps. Thus, in this configuration, the 
TCPW flow can take as much as 5.6 Mbps out of the total 
10 Mbps without harming NewReno performance. Fig. 6 
shows that RE estimates settle way below the potential 
fair share, while BE achieves a higher estimate. The 
throughput results also confirm that using BE is better in 
the random error case. 

 
Fig. 6 BE and RE with multiple concurrent NewReno connections 
(error rate 1%) [9] 

Table 2  
Estimation and throughput (five flows) [9] 

  

 
 
From Table 2, TCPW BE and TCPW RE obtain 2.42 and 
1.97 Mbps, respectively, while the competing TCP 
NewReno roughly sustains a 1.1 Mbps throughput which 
is equal to the fair share when five NewReno flows share 
the link. Thus, both TCPW BE and RE are friendly to 
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NewReno in this random error case. In addition TCPW 
BE is more efficient than TCPW RE. 
In case of non-adaptive traffic like UDP the BE method is 
the better method to be used, and in fact, in all cases 
when random errors are the predominant cause of packet 
losses. It is important to identifying predominant cause of 
packet loss. And combination of rate estimation and 
bandwidth estimation was used for simulation 
experiments. 
In case the loss indication is 3 DUPACKS, ssthresh and 
cwnd are set as follows 
If (3 DUPACK) 
If(cwnd/(RE*RTTmin)/seg_size)>θ)/*congestion*/ 
Ssthresh=(RE*RTTmin)/seg_size 
Else 
Ssthresh=(BE*RTTmin)/seg_size 
Endif 
If (cwnd>ssthresh) 
Cwnd=ssthresh 
Endif 
Endif  
θ=1.4 
In case of a packet loss indicated by a timeout expiration, 
ssthresh and cwnd are set as follows 
If (Time-out) 
Cwnd=1 
Ssthresh=(BE*RTTmin)/seg_size 
If(ssthresh<2) 
Ssthresh=2 
Endif 
Endif 
4.2 TCP Westwood with Agile probing 
It has been showen that TCP Westwood gives significant 
performance improvement over high-speed 
heterogeneous networks. The idea of TCPW is to use 
Eligible Rate Estimation (ERE) methods to set the 
congestion window (cwnd) and slow start threshold 
(ssthresh) after a packet loss as discussed. ERE is defined 
as the transmission rate a sender ought to use to achieve 
high utilization and remain friendly to other TCP 
variants. TCP Westwood with Agile probing (TCPW-A) is 
a sender side enhancement of TCPW. TCPW-A perform 
well when it was faced with highly dynamic bandwidth, 
large propagation time/bandwidth, and random loss in 
the heterogeneous Internet. TCPW-A achieves its goal by 
incorporating the following two mechanisms [6] 
(1) When a connection initially begins or restarts after a 
timeout, instead of exponentially expanding cwnd to an 
arbitrary preset sthresh and then going into linear 
increase, TCPW-A uses agile probing, a mechanism that 
repeatedly resets ssthresh based on ERE and forces cwnd 
into an exponential climb each time. The result is fast 
convergence to a more appropriate ssthresh value. 
(2) In congestion avoidance, TCPW-A invokes agile 
probing upon detection of persistent extra bandwidth via 
a scheme called persistent non congestion detection 

(PNCD). While in congestion avoidance, agile probing is 
actually invoked under the following conditions (1) large 
amount of bandwidth that suddenly becomes available 
due to change in network conditions. This can be done 
via scheme called Load Gauge. (2) Random loss during 
slow-start that causes the connection to prematurely exit 
the slow-start phase. [4] 
Two basic mechanisms are involved here, first 
mechanism is Agile Probing, which is invoked at 
connection start-up (including after a time-out), and after 
extra available bandwidth is detected. Agile Probing 
adaptively and repeatedly resets ssthresh based on ERE. 
Each time the ssthresh is reset to a value higher than the 
current one, cwnd climbs exponentially to the new value. 
This way, the sender is able to grow cwnd efficiently (but 
conservatively) to the maximum value allowed by 
current conditions without overflowing the bottleneck 
buffer with multiple losses. The second mechanism is 
“Load Gauge”. Load Gauge (LG) mechanism that aimed 
at monitoring extra available bandwidth and invoking 
Agile probing accordingly. cwnd/RTTmin indicates 
Expected Rate in no congestion and RE is the achieved 
rate. To be more precise, RE is the Achieved Rate 
corresponding to the Expected Rate 1.5 times RTT earlier. 
A comparison must be used, the corresponding Expected 
Rate, that is (cwnd -1.5)/RTTmin. RE tracks the Expected 
Rate in non-congestion conditions, but flattens, remaining 
close to the initial Expected Rate (ssthresh / RTTmin) 
under congestion. The Congestion Boundary is define as 
 
Congestion Boundary=β* Expected Rate + (1-β) * I n i t i al 
Expected Rate; 0<β<1,  
β=0.5. 
if (in Congestion Avoidance except for the initial two 
RTT)  
{ if( RE >Congestion Boundary) 
{ 
no_congestion_counter++; 
else if (no congestion_counter > 0){ 
no_congestion_counter--; 
if (no_congstion_counter > cwnd){ 
re-start Agile Probing; 
}else{ 
no_congestion_counter = 0; 
} 
If the parameter β is greater than 0.5, the Congestion 
Boundary line gets closer to Expected Rate. We can make 
this algorithm more conservative by setting β > 0.5. [4] [6] 
TCP Reno and its versions are widely used in current 
networks, however it has been actualized that their 
throughput deteriorates in high-speed network and 
wireless environments. To overcome these problems of 
TCP Reno versions, a number of protocols have been 
proposed. In these, friendliness with TCP Reno becomes 
very important. In the situation where TCP Reno and 
new protocols connections share the same bottleneck link 
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and throughput of either one protocol is degraded. 
Among of them, in the case of TCP Westwood, when the 
buffer size of bottleneck link router is set to bandwidth 
delay product, TCP Westwood achieves friendliness with 
TCP Reno. When buffer size was set to smaller than 
bandwidth delay product, throughput of TCP Reno 
connections degrade. On the other hand, when buffer size 
is set to larger than bandwidth delay product, throughput 
of TCP Westwood connections is degraded by TCP Reno 
connection. Improved version of TCP Westwood 
overcomes unfriendliness of TCP Westwood according to 
buffer size of bottleneck link router.  Buffer size of the 
bottleneck link router was estimated by applying a 
bandwidth estimation technique known as RCE (Residual 
Capacity Estimator). Rate estimation method is used for 
improvement. If TCP Westwood sender detects packet 
losses by duplicate ACK packets, cwnd and ssthresh are 
updated. 
If loss is detected by retransmission Timeout expiration, 
cwnd=1  and ssthresh was calculated by RE. 
Router buffer size can be calculated by 

 
( * )

*8
AvgRTT CB
packetSize

=                                          (8) 

TCP Westwood and TCP Reno are friendly to each other 
in case of buffer size 

 
* min

*8
C RTTB
packetSize

=                                          (9) 

Residual Capacity Estimator (RCE) [5] 
Residual Capacity Estimator (RCE) scheme estimates the 
bottleneck link capacity deducted by the uniformly 
distributed traffic present. The RCE scheme eliminates 
buffering times. The sender counts packets leaving to the 
receiver in retransmission time-out (RTO), and then the 
sender waits for correspondent returning ACK packets, 
where the time is set to ACKs_slot_time. Here, the sender 
calculates the wasted_time from the ACKs_slot_time 
standpoint. The sender measures an average of the 
interarrival time between the ACKs of ACKs_slot_time. 
The wasted_time is then computed as the sum of time 
exceeding the average in each inter arrival time of 
ACKs_slot_time. The exceeding gap times between ACKs 
are most likely a result of having periods of buffering. 
The sender has to compute the bottleneck link capacity by 

_
_ _ _

Bits ACKedC
ACKs slot time Wasted time

=
−

 (10) 

Buffer size estimation 

 
( min)*_
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packet size
−
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_
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diff delay

C
−
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_
_
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RTT diff delay
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RTT diff delay RTT

−
=
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        (13) 

 

And the ssthresh is calculated using compensated RTTmin 

min min2_ *
_( _ )

RTT RTTcompensated RTT RTT RTT
RTT diff delayfair response

= − =
−

 (14)
 

* _ min
_ *8

=
ERE compensated RTTssthresh

Packet size
 (15) 

The performance was evaluated as throughput ratio [5] 
_

_
Westwood throughputThroughputratio

legacyprotocol throughput
= (16) 

As shown in figure 7. 
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Fig.7 (a), (b), (c) Throughput ratio between legacy protocols and 
TCP Westwood/proposal scheme with variant buffer size. 
The appropriate ssthresh can enhance TCP performance. 
Assume that RTTmin is the minimum RTT. By setting the 
initial slow start thresh (ssthresh) of TCP to an arbitrary 
value, TCP performance may suffer from two potential 
problems as follows: 
1. If ssthresh is set too high over the bandwidth of the 
links, the exponential increase of Congestion window size 
(cwnd) will generate too many packets too quickly, 
causing consecutive packet loss at the bottleneck router 
and lots timeouts. 
2. If the initial ssthresh is set too low, the sender does not 
effectively utilize the exponential increase of the slow 
start state and switches prematurely to a linear increase 
of the congestion avoidance state. The utilization of a 
large bandwidth is not effective when the start up is poor. 
So it was required to set appropriate rate for flow. 
The appropriate rate defined as (AppR) where AppR 
with β = 0.3 and 0 < β < 1 

 
min

cwndExpectedrate
RTT

=                           (17) 

 
/Actualrate cwnd RTT=                    (18) 

 
* *(1 )( )

min
ExpectedRate B ActualRate BAppropriateRate AppR

RTT
+ −

= (19)                                                                                                            

 
     Fig. 8 Expected rate, appropriate rate, and actual rate with β = 0.3 
Figure 8 shows the relationships among the expected 
rate, the actual rate, and the appropriate rate. If 
parameter β is close to 1, the appropriate rate would get 
closer to the expected rate. Therefore, the appropriate 
ssthresh would be set too high. On the other hand, if 
parameter β is close to 0, the appropriate ssthresh would 
be too conservative (small) to degrade TCP performance. 
In this paper, we make the appropriate rate conservative 
by setting β to 0.3. If the appropriate rate is too large, 
ssthresh would be set too high. This would cause 
multiple packet loss if the exponential increase of cwnd 
generates too many packets too quickly. When a sender 
receives an ACK in the slow-start state, the pseudo code 
of the algorithm is as given. [3] 

if (cwnd < ssthresh) /* slow start */ 
ssthresh = AppR × RTTmin/seg_size; 
if (cwnd > sthresh) /*congestion avoidance */ 
cwnd = ssthresh; 
endif 
endif 
 
if (timeout expires) /*slow start */ 
cwnd = 1; 
ssthresh = AppR × RTTmin/seg_size; 
if (ssthresh < 2) 
ssthresh = 2; 
endif 
endif 
When a timeout or a fast retransmission is in the 
congestion avoidance state, the pseudo code of the 
algorithm is as follows 
If (fast retransmission executes) 
ssthresh = Actual Rate × (1−β) × RTTmin/seg_size; 
cwnd = ssthresh; 
endif 
if (timeout expires) 
cwnd = 1; 
ssthresh = AppR × RTTmin/seg_size; 
if (ssthresh < 2) 
sthresh = 2; 
endif 
endif 
Appropriate Congestion Window Calculation 
RTTdiff = RTTmax − RTTmin 
Variation = RTTdiff/RTTmax, 
For three consecutive decreases of RTT, three cases are 
defined of the next cwnd below. 
cwndnext = cwndcur + 1, if Variation < 1/3 
cwndnext =cwndcur + 3, if 1/3 ≤ Variation < 2/3 
cwndnext =cwndcur + 5, if Variation ≥ 2/3 
For three consecutive increases of RTT, cwndnext = _ 
cwndcur + 1, if Variation < 1/2 
cwndnext = cwndcur , if Variation ≥ 1/2. 
The discussed scheme is summarized in Fig. 9. This 

 
Fig.9 Congestion control diagram for the discussed scheme [3] 
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scheme helps a sender intelligently solve the issues of 
high dynamic bandwidth and long delay. 
Another contribution of this work was the proposed 
observation RTT mechanism, which uses an aggressive 
congestion avoidance strategy. It observes variations of 
RTT and adjusts the cwnd effectively to improve 
performance. 

CONCLUSIONS 
TCP Westwood estimates bandwidth and adjusts the 
cwnd and ssthreh after loss detection. Sets bandwidth to 
the measured rate currently experienced by the 
connection, rather than using the conventional MD 
scheme. Literatures say experimental studies reveal 
improvements in throughput performance, as well as in 
fairness. In addition, friendliness with TCP Reno was 
observed in a set of research paper showing that TCP 
Reno connections are not starved by TCPW connections. 
Most importantly, TCPW is extremely effective in mixed 
wired and wireless networks.  TCPW handles the losses 
caused by link errors. In presence of errors TCP 
Westwood outperforms without stealing large fraction of 
competing TCP. The BE sampling method ‘overestimates’ 
the connection fair share at  bottleneck in case of lossless 
networks with bursty traffic. In general BE is more 
effective in environments where friendliness (to other 
TCP connections) is not of concern. 
 
SCOPE OF IMPROVEMENT 
Refinement in bandwidth       estimation and filtering 
method can be done in order to improve TCP 
Westwood’s performance. Present implementation 
calculate congestion window and ssthresh base on 
estimated bandwidth only on loss occurrences, this can 
be done on each packet reception. This can improve 
bandwidth utilization. Improvement in Friendlyness has 
scope. Based on the network load cwnd can be   adjusted. 
Bandwidth Delay Product and buffer size comparison can 
be done. RTT can also be useful parameter in improving 
the performance. Modified algorithm can be 
implemented to validate on simulator and on real test 
beds for wired/wireless networks. 
 
Acknowledgment 
The author is thankful to Principal and Head of 
Electronics and Communication Department, 
CHARUSAT University,Gujarat- India for their support 
and encouragement during the research endeavour. We 
would also like to thank Principal and Head of 
Electronics Department, Birla Vishwakarma 
Mahavidhyalaya, Gujarat-India for all cooperation during 
the research work. 

REFERENCES 
[1] Shimaa Hagag, Ayman EI-Sayed(IEEE Senior Member)  

“Enhanced TCP Westwood Congestion Avoidance 

Mechanism(TCP WestwoodNew)”,InternationalJournal Of 
Computer Application, May-2012. 

[2] Kou Lan, Niu Sha“A CMT Congestion Window Updates 
Mechanism Based on TCP Westwood”,IEEE International 
Conference on Mechatronic Science, Electric Engineering 
and Computer, August-2011, held at Jilin China. 

[3] Neng-Chung Wang, Jong-Shin Chen, Yung-Fa Huang, Chi 
LunChiou “Performance Enhancement Of TCP in Dynamic  
Bandwidth Wired and Wireless Network”, Springer 
Science+Business Media, Wireless Personal 
Communications: An  International Journal archive 
Volume 47 Issue 3, November 2008 Pages 399 – 415. 

[4] Kenshin Yamada, Ren Wang, M. Y. Sanadidi, Mario Gerla 
“TCP With Sender-Side Intelligence to Handle Dynamic, Large, 
Leaky Pipes” IEEE Journal on  Selected Areas in 
Communications,Volume: 23 , Issue: 2  Page(s): 235 - 248 
Feb-2005. 

[5] Kazumi Kaneko, Jiro Katto “Reno Friendly TCP Westwood 
Based On Router Buffer Estimation”, International 
Conference on Autonomic and Autonomous System and 
International Conference on Networking and Services, 
IEEE Computer Society, 2005. 

[6] Kenshin Yamada, Ren Wang, M. Y. Sanadidi, Mario Gerla 
“TCP Westwood with Agile Probing: Dealing with Dynamic, 
Large, Leaky Pipes”, in proceeding of: Communications, 
2004, IEEE International Conference. 

[7] S. Floyd, T. Henderson, A. Gurtov, “The NewReno 
modification to TCP's fast recovery algorithm”, IETF RFC, 
3782, April-2004.  

[8] S. Floyd, T. Henderson, A. Gurtov, Y. Nishida “The 
NewReno Modification to TCP’s Fast Recovery Algorithm”, 
Internet Engineering Task Force RFC-6582 2004. 

[9] M. Gerla, B.K.F. Ng, M.Y. Sanadidi, M. Valla, R. Wang 
“TCP westwood with adaptive bandwidth estimation to improve 
efficiency/friendliness tradeoffs”, Journal of Elsevier 
Computer Communication volume 27 (1) (2004) 41_58. 

[10] S. Floyd, T. Henderson, A. Gurtov “The New Reno 
Modification to TCP’s Fast Recovery Algorithm,RFC-
3582”,Networking Working Group,April-2004. 

[11] S. Floyd, T. Henderson, A. Gurtov, Y. Nishida “The New 
Reno Modification to TCP’s Fast Recovery Algorithm,RFC-
6582”, Internet Engineering Task Force, 2004. 

[12] Claudio Casetti, Mario Gerla, Saverio Mascolo, 
M.Y.Sanadidi, Ren Wang “TCP Westwood: End-to-End 
Congestion Control For Wired/Wireless Networks”, Wireless 
Networks 8, 467–479, 2002 Kluwer Academic Publishers. 
Manufactured in The Netherlands. 

[13] Ren Wang, Massimo Valla, M. Y. Sanadidi, Mario Gerla 
“Adaptive Bandwidth Share Estimation in TCP Westwood”, 
Proc. IEEE Globecom 2002, Taipei, Taiwan, R.O.C., 
November 17-21, 2002. 

[14] Mario Gerla, M. Y. Sanadidi, Ren Wang, and Andrea 
Zanella “TCP Westwood: Congestion Window Control Using 
Bandwidth Estimation”, Proceedings of IEEE Globecom 
2001, Volume: 3, pp 1698-1702, San Antonio, Texas, USA, 
November 25-29, 2001. 

[15] S. Mascolo, C. Casetti, M. Gerla, S. S. Lee, M. Sanadidi 
“TCP Westwood: Congestion control with faster 
recovery”,UCLA Computer Science Department, Los 
Angeles, CSD TR200017. 

[16] K. Fall and S. Floyd, “Simulation-based comparisons of Tahoe, 
Reno, and SACK TCP”, Newsletter , ACM SIGCOMM 
Computer Communication Review. 

[17] Ns-2, network simulator (ver.2).LBL, URL: http://www-
mash.cs.berkeley.edu/ns. 

[18] TCP Westwood modules for ns-2:URL: 
http://www1.tcl.polito.it/casetti/tcp-westwood. 

IJSER

http://www.ijser.org/
http://dl.acm.org/citation.cfm?id=J806&picked=prox&cfid=233856199&cftoken=87370101
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=30289
http://www-mash.cs.berkeley.edu/ns
http://www-mash.cs.berkeley.edu/ns
http://www1.tcl.polito.it/casetti/tcp-westwood


International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013                                                                    205 
ISSN 2229-5518 

IJSER © 2013 
http://www.ijser.org  

 

[19] J. B. Postel, “RFC-793: Transmission Control Protocol”, IETF, 
September 1981. 

[20] A Book on “TCP/IP Protocol Suite” by Behrouz A. 
Forouzen. 

[21] C. P. Fu, “TCP Veno: End-to-End Congestion Control 
Over Heterogeneous Networks,” Ph.D. dissertation, The 
Chinese University, Hong Kong, 2001. 

[22] Cheng Peng Fu, Soung C. Liew, TCP Veno: TCP 
Enhancement for Transmission Over Wireless Access 
Networks, IEEE Journal On Selected Areas In 
Communications, Vol. 21, No. 2, February 2003 

[23] Kai Xu, Ye Tian, and Nirwan Ansari, “TCP-Jersey for 
Wireless IP Communications”, IEEE Journal On Selected 
Areas In Communications, Vol. 22, No. 4, May 2004 747-
756 

[24] TCP Westwood Modules [Online]. Available: 
http://www1.tlc.polito.it/casetti/tcp-westwood 

IJSER

http://www.ijser.org/

	CONCLUSIONS



